<u>ANSC 3408</u> 10-8-25

KEY Luteal Phase

- What are the stages of the Luteal Phase?
 Metestrus, Diestrus
- 2. What is the main hormone produced during the Luteal Phase? Why? Progesterone, CL forms and secretes it
- 3. What are the functions of Progesterone?
 - Maintains pregnancy
 - Inhibits the frequency of release of LH from AP
 - Uterine secretions ↑, muscle contractions ↓
 - Collagenase production

Formation of the CL

- 4. What does the Preovulatory follicle consist of ..?
 - Granulosa cells that line the antrum
 - Basement membrane separating Granulosa cells and Theca cells
- 5. What occurs shortly before ovulation?
 - Basement membrane begins to degenerate
 - Collagenase breaks down Collagen
 - Physical separation between Granulosa and Theca cells becomes incomplete and the cells intermingle
- 6. What occurs during ovulation?
 - Many small blood vessels rupture causing local hemorrhage
 - Follicle "implodes"
 - Granulosa and Theca cells begin to mix
 - Basement membrane forms the connective tissue structure of the CL
 - Formation of CH
- 7. At what stage is the CH → CL?

 Metestrus
- 8. What does the functional CL consist of?
 Mixture of Large Luteal Cells (LLC) and Small Luteal Cells (SLC)

<u>ANSC 3408</u> 10-8-25

- 9. What are the functions and characteristics of the Large Luteal Cells?
 - Came from Granulosa Cells
 - During CL development, they grow in size (hypertrophy) by 2x
 - Produce 85% of Progesterone
 - Have a PGF2∝ receptor
 - Produces relaxin
 - Produces oxytocin
 - Signals for PGF2∞ from the uterus (used in Luteolysis)
- 10. What are the functions and characteristics of the Small Luteal Cells?
 - Come from Theca Cells
 - percentage of lipid droplets
 - Have oxytocin receptor
 - Produces progesterone
 - During CL development, they increase in cell number (hyperplasia) by 5x
- 11. How is Progesterone secreted?
 - Cholesterol is imported to luteal cell wall by way of Low Density Lipoprotein (LDL)
 - LH binds to specific LH receptors on the plasma membrane
 - LH receptor compact activates cascade that stimulates adenylate cyclase (AC) which stimulates the production of a 2nd messenger (cAMP)
 - Mitochondrial enzymes convert cholesterol to pregnenolone
 - Pregnenolone is converted to Progesterone in the Smooth ER
- 12. Where does Progesterone cause an effect?
 - Suppresses GnRH secretion

 - Promotes development of mammary gland
 - Induces secretion of "uterine milk"
 - "Quiets" myometrial muscle contractions
- 13. What happens to the CL when a female isn't pregnant? What does it become?
 - CL is irreversibly damaged and eventually "dies" Luteolysis
 - Becomes a CA
- 14. What must occur before a female can reenter the Follicular Phase? Luteolysis
- 15. What reproductive organ is required for successful Luteolysis?

 Uterus
- 16. Where is PGF2a produced?

<u>ANSC 3408</u> 10-8-25

- Uterine Endometrium
- PGF2a is transported into the ovary and enters the CL through the vascular countercurrent exchange system without becoming diluted

17. What are the 2 phases of Luteolysis?

- Functional Luteolysis
- Structural Luteolysis

18. What occurs in Functional Luteolysis?

- This will be 1st to occur
- **P**4 production
 - PGF2a will bind to its receptor on LLC
 - PGF2a ★ oxytocin
 - Oxytocin receptors are on SLC
 - PGF2a signaling
 - In LDL and LH receptors on luteal cells

19. What occurs in Structural Luteolysis?

- Luteal cells die (apoptosis)
 - Blood cells and SLC die first
 - LLC die 2nd
 - Immune cells digest cell fragments

20. How does PGF2a send a signal to Luteal Cells to stop P4 synthesis?

- PGF2a binds to its receptors on luteal cells
- PGF2a receptor complex opens calcium channels
 - High calcium leads to apoptosis
- PGF2a receptor complex also activates protein kinase c (PKC), inhibiting P4 synthesis